LNCB74 is a potent and safe next-generation antibody-drug-conjugate utilizing a cancer selective linker for the treatment of B7-H4 expressing cancers

Nextoure

Abstract #1898

derived tumor microarrays.

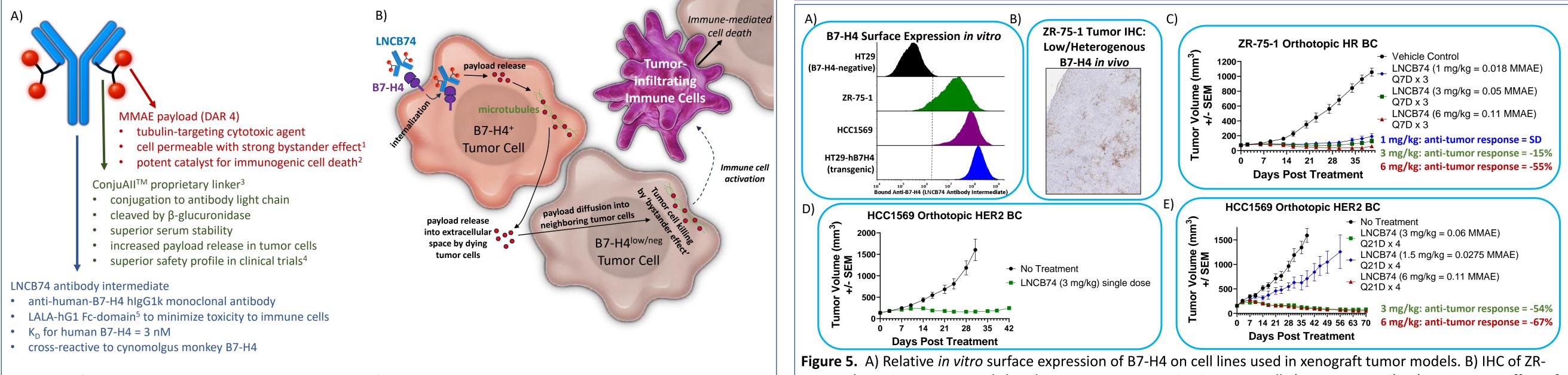
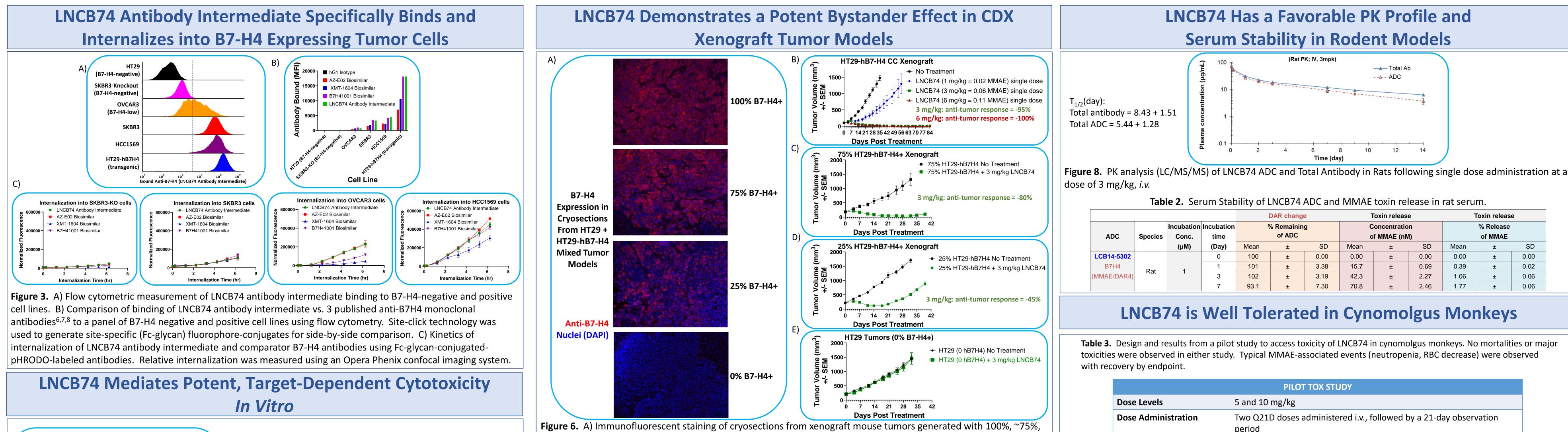
Background

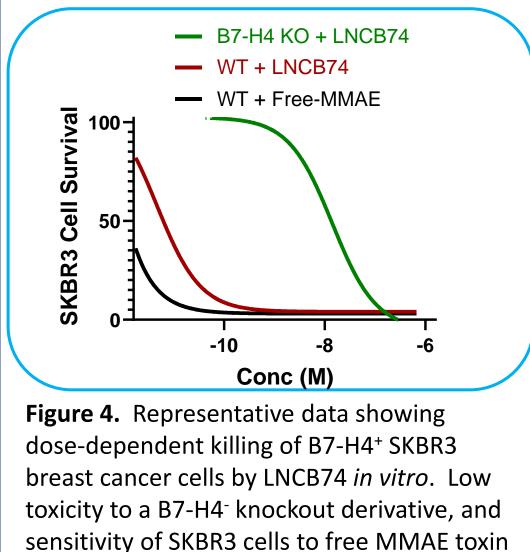
The B7 family protein B7-H4 is highly expressed on a range of solid tumors including breast, ovarian, and endometrial cancers, where it may play a role in immune evasion. In non-cancerous (B7-H4-negative) AZ-E02 Biosimilar tissues, B7-H4 expression is limited, suggesting it may be a potential target for an antibody drug SKBR3-Knocko XMT-1604 Biosimila (B7-H4-negative) conjugate (ADC). LNCB74 is a human IgG1 antibody conjugated to the potent microtubule I NCB74 Antibody Inter (B7-H4-low) disrupting payload monomethyl auristatin E (MMAE) with a drug-to-antibody ratio of 4 (DAR4). The ADC employs a highly selective B7-H4 antibody based upon NextCure's expertise in B7-H4 tumor biology coupled with a glucuronidase-cleavable, site-specific linkage to an engineered cysteine in the antibody light chain via LigaChem Biosciences' ConjuAll[™] technology. This $10^5 10^6 10^7 10^8$ improves the safety profile and therapeutic index of the agent by a) increasing stability in circulation, b) selectively releasing payload in tumor cells, and c) reducing payload release in off- LNCB74 Antibody Intermediate AZ-E02 Biosimila target cells. LNCB74 was further engineered with a "LALA"-mutant Fc region to minimize uptake AZ-E02 Biosimilar 🔺 XMT-1604 Biosimilar ★ XMT-1604 Biosimilar ★ XMT-1604 Biosimilar ▲ XMT-1604 Biosimilar B7H41001 Biosimilar 100000 – 🔫 B7H41001 Biosimilar 🕶 B7H41001 Biosimilai B7H41001 Biosimila and toxicity to immune cells. In a nonhuman primate (NHP) toxicity study, LNCB74 was well tolerated for repeat dosing and provides evidence for a superior safety profile without noticeable side effects. LNCB74 is rapidly internalized by B7-H4-expressing tumor cells, and demonstrates 2 4 6 2 4 6 0 2 4 6 2 4 6 nternalization Time (hr) Internalization Time (hr) Internalization Time (hr) potent, target-specific cytotoxicity on multiple cancer cell lines. In vivo studies demonstrate a **Figure 3.** A) Flow cytometric measurement of LNCB74 antibody intermediate binding to B7-H4-negative and positive strong bystander effect following a single dose administration of LNCB74. A rapid and durable cell lines. B) Comparison of binding of LNCB74 antibody intermediate vs. 3 published anti-B7H4 monoclonal anti-tumor response has been demonstrated in multiple cell-line derived (CDX) and patientantibodies^{6,7,8} to a panel of B7-H4 negative and positive cell lines using flow cytometry. Site-click technology was derived xenograft (PDX) tumor models. In summary, LNCB74 is a promising ADC enabling specific used to generate site-specific (Fc-glycan) fluorophore-conjugates for side-by-side comparison. C) Kinetics of internalization of LNCB74 antibody intermediate and comparator B7-H4 antibodies using Fc-glycan-conjugatedtargeting of B7-H4 positive cancers across a spectrum of indications.

B7-H4 Tumor P-Score B7-H4 Tumor H-Score Breast Ovarian Lung

Figure 1. A) Expression of B7-H4 in cancer. Representative IHC for protein expression in normal breast tissue, and in solid tumor indications with highest prevalence of B7-H4 expression, including breast, ovarian, endometrial, lung and cholangiocarcinoma. B) Range of B7-H4 expression in specific indications as determined by IHC analysis of patient-

Mechanism of Action for LNCB74, a **B7-H4** Targeting ADC

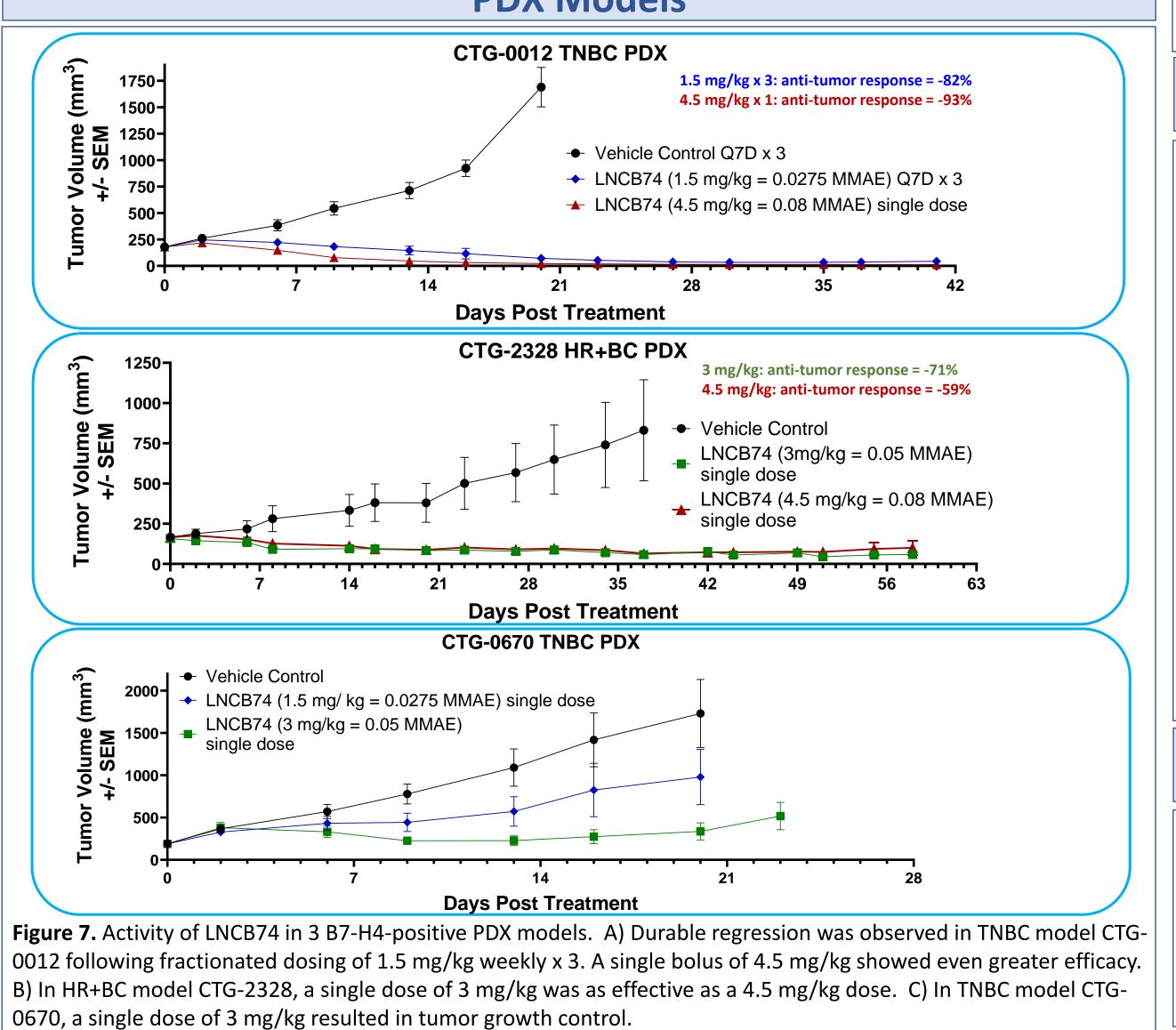

Figure 2. A) Structure of B7-H4 targeting ADC LNCB74. B) Mechanism of action of LNCB74, an ADC which delivers the 75-1 orthotopic tumors reveals low, heterogenous expression in tumor cells (p-score <<50%). C) Anti-tumor effect of LNCB74 in the ZR-75-1 orthotopic breast cancer tumor model. D) Anti-tumor effect of LNCB74 in the HCC1569 microtubule-targeting MMAE payload to B7-H4 positive tumor cells. MMAE generates immunogenic cell death and mediates a potent bystander effect to kill neighboring tumor cells following uptake by B7-H4 expressing tumor cells. orthotopic breast cancer tumor model following a single dose or E) repeated dosing every 3 weeks. (SD = stable disease)

B7-H4 Protein is Expressed in Multiple Tumor Indications

Daniel P. Fitzgerald, Ph.D¹, Duc N Doan, Ph.D¹, Riley B. Peacock¹, Ph.D¹, Shannon M. Kahan, Ph.D¹, Suvendu Lomash, PhD¹, Stephen Slocum, Ph.D², Kwanghwa Jung, Ph.D³, Hwanhee Oh, Ph.D³, Ingrid Meza¹, Yanira Manzanarez¹, Shanmugam Selvam, PhD¹, Dallas B. Flies, PhD¹, Chul-Woong Chung, Ph.D³, Sol Langermann, Ph.D¹

are shown for reference.

Table 1. EC50 values for in vitro cytotoxicity by LNCB74
 on cancer cell lines. Where possible, EC50 values are shown for isogenic B7-H4-negative cell lines (knockoutderivative or parental for transgenic cell lines).


	Turner Turne	B7-H4 Surface	EC50 (nM)		
Cell Line	Tumor Type	Expression	B7-H4⁺	В7-Н4 ⁻	
SKBR3	HER2+ BC	+++	0.005	14	
HCC1569	HER2+ BC	+++	2	ND	
ZR-75-1	HR+ BC	++	8	ND	
OVISE	OC	++/+++	0.1	ND	
OVCAR3	OC	+	3	ND	
A549-hB7-H4	LC (B7-H4 transgenic)	++++	0.06	713	
HT29-hB7-H4	CC (B7-H4 transgenic)	++++	0.2	122	

LNCB74 Elicits an Anti-Tumor Effect in B7-H4 Low and High CDX Xenograft Tumor Models

¹NextCure, Inc., Beltsville, MD, USA; ²AntibodyChem Biosciences, Boston, MA, USA; ³LigaChem Biosciences, Daejeon, Republic of Korea

~25%, or 0% B7-H4 positive cells by mixing transgenic HT29-hB7-H4 cells with B7-H4-negative HT29 'wildtype' cells. B) Dose response for LNCB74 anti-tumor activity using an HT29-hB7-H4 transgenic tumor model. C) Anti-tumor / bystander effect of a single dose of 3 mg/kg LNCB74 in a model composed of 75% B7-H4+ cells. D) Anti-tumor / bystander effect of a single dose of 3 mg/kg LNCB74 in a model composed of 25% B7-H4+ cells. E) LNCB74 does not affect tumor progression in HT29 tumors which do not express B7-H4 target protein.

LNCB74 Shows Potent Anti-Tumor Activity in 3 Breast Cancer PDX Models

LigaChemBio

					DAR change Toxin release		e	Toxin release				
		Incubation	Incubation	% Remaining of ADC		Concentration		% Release				
ADC	Species	Conc.	time			of MMAE (nM)		of MMAE				
		(µM)	(Day)	Mean	±	SD	Mean	±	SD	Mean	±	SD
LCB14-5302	Rat	t 1	0	100	±	0.00	0.00	±	0.00	0.00	±	0.00
B7H4			1	101	±	3.38	15.7	±	0.69	0.39	±	0.02
(MMAE/DAR4)			3	102	±	3.19	42.3	±	2.27	1.06	±	0.06
			7	93.1	±	7.30	70.8	±	2.46	1.77	±	0.06

PILOT TOX STUDY			
Dose Levels	5 and 10 mg/kg		
Dose Administration	Two Q21D doses administered i.v., followed by a 21-day observation period		
Macroscopic Observations	 No observations at 5 mg/kg At 10 mg/kg: Skin discoloration Lung adhesion to thoracic wall and diaphragm in one animal (cannot be attributed independently to test article) Minimal Increase in AST (fully reversable) Mild dose-dependent decrease in RBC, hemoglobin, hematocrit Dose-dependent changes to WBC, neutrophils observed (fully reversable) 		
Overall Observations	All animals survived at day 43Safe and tolerable		

Conclusions

- B7-H4 protein is highly expressed in multiple tumor indications. B7-H4 expression is low and limited in normal healthy human tissues, providing a potential broad therapeutic index for a B7-H4 targeting ADC
- LNCB74 antibody intermediate is a high-affinity monoclonal hlgG1 (LALA-mutant-Fc) with specificity for human B7-H4. LNCB74 shows specific binding to B7-H4 expressing tumor cells and is rapidly internalized in a target-dependent manner by cancer cells
- LNCB74 is a DAR4 ADC carrying a tubulin targeting MMAE payload. MMAE was conjugated to the light-chain of the antibody intermediate using LCB's proprietary linker technology
- LNCB74 mediates potent cytotoxicity, with sub-nanomolar to low nanomolar EC50 values on multiple B7-H4-positive cancer cell
- LNCB74 demonstrates favorable PK and stability in rodents, with very low release of free MMAE payload in blood, consistent with the safe profile observed preclinically
- LNCB74 shows strong anti-tumor activity in multiple CDX and PDX tumor models. A single dose of 3 mg/kg resulted in durable tumor regression in multiple tumor models, suggesting activity comparable or superior to published B7-H4 targeting ADCs
- LNCB74 was well tolerated in cynomolgus monkeys following 2 doses of up to 10 mg/kg, suggesting a superior safety profile
- LNCB74 is a promising candidate therapeutic for treating multiple solid tumor indications, including breast, ovarian, endometrial, lung, and biliary cancers

References

1. Khera, et. al. (2022) Cellular-resolution imaging of bystander payload tissue penetration from antibody-drug conjugates. Mol Cancer Ther. 21, 310-321. 2. Ulrich, et. al. (2023) MMAE drives immunomodulatory changes in a preclinical xenograft model that are distinct from other clinical-stage ADC payloads. Poster at AACR annual meeting

3. Shin, et. al. (2021) An elaborate new linker system significantly enhances the efficacy of an HER2-antibody-drug conjugate against refractory HER2-positive cancers. Adv. Sci. 8, 2102414

4. Li, et.al. (2023) 3044: FS-1502 in HER2-positive advanced breast cancer: Results from an open-label, phase I study. Poster at ASCO annual meeting. 5. Lund, et.al. (1992) Multiple binding sites on the CH2 domain of IgG for mouse Fc gamma R11. Mol Immunol. 1, 53-59.

6. Kinneer, et. al. (2022) Therapeutic B7-H4 binding molecules. International patent publication number WO 2022/053650 A1

7. Lowinger, et. al. (2022) B7-H4-targeted antibody-drug conjugates and methods of use thereof. International patent publication number WO 2022/147532 A1 8. Gardai, et. al. (2023) B7-H4 antibody-drug conjugates for the treatment of cancer. International patent publication number WO 2023/056362 A1